| |
|
ENERGIE |
|
|
|
|
|
|
Die Kernspaltung
Kernspaltung bezeichnet einen Prozess der Kernphysik, bei dem ein Atomkern unter Energiefreisetzung in zwei oder mehr Bestandteile zerlegt wird. Seltener wird die Kernspaltung auch als Kernfission (v. lat. fissio = das Spalten) bezeichnet - ein Begriff, der nicht mit Kernfusion, dem Verschmelzen zweier Atomkerne, verwechselt werden darf.
Einige Atomkernarten (Nuklide) spalten sich ohne äußere Einwirkung. Diese spontane Spaltung ist eine Art des radioaktiven Zerfalls. Sie lässt sich quantenmechanisch ähnlich dem Alpha-Zerfall durch den Tunneleffekt erklären.
Praktisch weit wichtiger ist jedoch die induzierte Spaltung, eine Kernreaktion, bei der ein stoßendes Teilchen, meist ein Neutron, vom getroffenen Kern absorbiert wird. Der Kern gewinnt dadurch die Bindungsenergie (und zusätzlich auch eventuelle kinetische Energie) dieses Neutrons, befindet sich also in einem angeregten Zustand und spaltet sich. (Jedoch sind an Stelle der Spaltung auch andere Reaktionsverläufe möglich, z. B. indem der angeregte, nun um ein Neutron reichere, Kern sich durch Emission eines Gammaquants abregt und so in einen stabilen Zustand übergeht.)
Bei beiden Arten der Spaltung können außer den meist 2 Bruchstücken auch einige (typisch 2 oder 3) Neutronen freigesetzt werden. Beide Arten der Spaltung kommen nur bei genügend schweren Nukliden vor, denn nur dann sind die entstehenden neuen Kerne fester gebunden als der ursprüngliche Kern, so dass die Spaltung dem Kern einen "Energievorteil" bringt. Anschaulich lässt sich die Spaltung nach dem Tröpfchenmodell durch Schwingung und Zerreißen des Kerns verstehen: der Kern dehnt sich in die Länge und schnürt sich in der Mitte ein. Die langreichweitige elektrische Abstoßung der Protonen überwiegt dann die anziehende, kurzreichweitige Kernkraft (siehe Atomkern); die Bruchstücke werden folglich auseinander getrieben. Das animierte Bild zeigt, wie der Kern (rot) von einem Neutron (blau) getroffen wird und in zwei Bruchstücke zerfällt, wobei noch einige – im Bild drei – Neutronen frei werden.
Durch thermische Neutronen sind meistens nur Isotope mit ungerader Neutronenzahl gut spaltbar, da nur sie durch die Aufnahme eines Neutrons Paarenergie (s. Tröpfchenmodell) hinzugewinnen.
Americium hat als 95. Element mit seiner ungeraden Protonenzahl bei ungeraden Nukleonenzahlen eine gerade Zahl von Neutronen, während Plutonium, als 94. Element, mit seiner geraden Protonenzahl bei ungeraden Nukleonenzahlen auch ungerade Neutronenzahlen hat.
Die kleinste Masse eines spaltbaren Materials, in der eine Kettenreaktion aufrechterhalten werden kann, heißt Kritische Masse. Sie hängt ab von der Anwesenheit und Menge einer Moderator-Substanz und von der geometrischen Anordnung. Ein dünnes Blech würde z.B. fast alle Neutronen nach außen verlieren, während innerhalb eines kompakten Objekts mehr Neutronen Gelegenheit haben, die Atomkerne zu treffen. Die kleinste kritische Masse wird in einer kugelförmigen Anordnung erreicht. Auch dann könnte sie aber durch Kompression des Materials noch verringert werden, so dass eine absolute untere Grenze nicht existiert.
Die Geometrieabhängigkeit der kritischen Masse wird ausgenutzt, um beim Herstellen oder Bearbeiten von Kernbrennstoffen die zur Kettenreaktion führende Kritikalität zu vermeiden. So werden etwa chemische Reaktionen in flachen Wannen durchgeführt, in denen das Material über weite Flächen verteilt ist.
|
|
|
|
|
|
|
|
|
|